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We study the viscosity behaviour of metal sulphonate- (or metal carboxylate-) containing ionomers in 
solution with non-polar solvents; at relatively low polymer concentration these ionomer solutions show 
an unusually large thickening behaviour, due to the association of the metallic groups. By regarding the 
ionomer system as a polymer solution with transient crosslinks, an expression is derived from the 
viscosity of the sulphonated polymer in terms of the viscosity of the corresponding non-sulphonated 
polymer and the average number of crosslinks associated with any chain. 
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INTRODUCTION 

Recently, there has been increased interest in the 
properties of metal sulphonated (and metal carboxylated) 
ionomers. Experimental studies 1-6 on the solution 
behaviour of these systems have shown them to exhibit 
unusually high viscosity behaviour, especially in solvents 
of low polarity. These results were interpreted'-6 as 
arising from strong physical associations of the ion pairs, 
effectively crosslinking the different polymer chains in the 
solution and leading to gelation for certain conditions of 
concentration and temperature 7. Unlike strong 
(covalently crosslinked) gels 8, ionomer solutions are 
highly viscous fluids, indicating weak bonds that are not 
permanent but fluctuate with time. 

Ionomers are a distinct class of polymers containing 
relatively few metallic groups (usually sulphonated or 
carboxylated groups) on some of the monomers of a 
hydrocarbon polymer chain. The fraction f of metallic 
groups along the chains may be controlled chemically. 
The metal sulphonate (or metal carboxylate) groups act as 
electric dipoles when they are not dissociated; usually this 
occurs in the molten phase or in solution with a non-polar 
solvent. Because of the attractive nature of the dipole- 
dipole interaction 7, the metallic groups associate, 
crosslinking different chains for finite periods of time. The 
finite lifetime of the crosslinks is thought to arise from the 
fluctuations in the relative kinetic energy of the two 
corresponding monomers. 

Two monomers carrying dipoles Pl and P2 have an 
energy of interaction u depending on their distance r 
apart: 

1 3 
u = ~ ( p t  p2 - r~{pl.r)~p2-r)) (1) 

where e is the dielectric constant of the medium. 
We are interested in the range of interaction of the 

dipolar energy; that is, in the distance r 0 for which u is of 
the order of kT. This is calculated as 

* Address after January 1983: Instituto de Fisica, UNAM, apdo. postal 
20-364, 01000 Mexico D.F. 

ro~()~)l/3a (2) 

where 

)~ =-- p2 

4nea3k T 
(3) 

and where a is a characteristic monomer dimension. As 
explained in ref. 7, at room temperature 2 is between 10 
and 100; therefore, r o is between 2a and 5a. 

We are concerned here with the unusual behaviour of 
the viscosity of ionomers in semidilute solutions. The 
viscosity of the ionomer solution can be understood in 
terms of the viscosity of a corresponding non-ionic 
polymer solution, for which we know that viscosity is 
proportional to the maximum relaxation time of a 
polymer chain 8 (i.e. the time that it takes for a chain 
to renew completely its original conformation, by leaving 
the tube in which it is trapped). The proportionality factor 
is the elastic plateau modulus of the transient network 8. 
We will see that the addition of a few physical crosslinks 
per chain leaves the plateau modulus almost unchanged 
but drastically quenches the diffusive reptating motions of 
the chain along its tube. 

In the next section we will give an expression for the 
effective reptation time of a polymer chain carrying ion 
pairs in terms of the reptation time for a non-ionic 
polymer. The following section will be used to present an 
argument tending to show that the value of the plateau 
modulus is not altered much by the introduction of a few 
crosslinks per chain; in the same section, we will give the 
final expression for the viscosity of the ionomer in terms of 
the viscosity of the non-ionic polymer and the average 
number of crosslinks carried by any chain. Finally, this 
last expression will be computed as a function of 
concentration and temperature for some particular cases. 

THE EFFECTIVE REPTATION TIME 

Let us consider a monodisperse ionomer solution of 
chains, where a fraction f of the monomers are 
sulphonated. We are interested in the behaviour of the 
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Figure I The history of a chain represented in a one-dimensional 
time diagram. Each segment indicates a crosslink, acquired at the 
time where the segment starts (fil led circles) and broken at the time 
where it ends 

ionomer in the semidilute regime; that is, at a 
concentration c above the overlap concentration c* for 
which the chains start to interpenetrate. In this regime, the 
chains overlap and form a network made of chains and 
entanglements. This solution is often described in terms of 
'blobs'S'9: each chain in the solution has a certain number 
of contacts with other chains, and a blob is that part of the 
chain between two consecutive contacts. The mean 
distance between two consecutive contacts is the 
correlation length 3. Inside each blob there is single-chain 
behaviour (excluded volume or Gaussian, depending on 
temperature); however, the chain of blobs is Gaussian (the 
blobs are uncorrelated) on distance scales r > ¢. 

The number of contacts per chain is estimated a s  7'9 

n ~- (c/c*) 5/4 "~ Nc 5/4 

for excluded volume blobs 

(4a) 

rl "~ (C/C*)  2 ~-- N C  2 (4b) 

for Gaussian blobs 

Each contact has a certain number of monomers together, 
close enough to form a physical link if they were metal- 
sulphonated (see the discussion leading to equations (2) 
and (3)). 

We are interested in the probability P(~) for a chain, 
picked at random at any instant of time, to have 
crosslinks. Let f f  be the probability for a contact to be a 
physical link; as we will see in the last section, in the case of 
ionomer gels if '  is a number much smaller than unity. We 
can see that we have a set of n events (contacts per chain), 
each having a probability f f  to be a physical link. On the 
assumption that these events are uncorrelated, that is, that 
the probability f f  is independent of what is happening at 
any other contact of the chain, we would have the 
following binomial distribution: 

The average number of crosslinks per chain is then 

(5) 

= ~ ~P(ct) = n ~ (6) 
~t=O 

All the above calculations are instantaneous, as if we 
were taking a snapshot of the solution. Actually we know 
(because the ionomer gel flows) that the crosslinks are not 
permanent, but that they fluctuate. We assume a lifetime T 
per bond (which may depend on temperature); that is, the 
probability density for a crosslink to last a time t is a f- 
function centred at z. 

Let us follow the history of a particular chain chosen at 
random and sketch a one-dimensional time diagram (cf. 
Figure 1). Each horizontal segment signifies a physical 

bond, acquired at the time where the segment starts (filled 
circles) and broken at the time where it ends. Every 
segment in this one-dimensional diagram is of size z, due 
to the assumption of uniform lifetime for the physical 
links. If we pick any point on the time axis, the number of 
horizontal segments above the chosen point indicates the 
number of crosslinks that the chain has at the 
corresponding time. We know that there is a binomial 
probability (equation (5)) for any chain picked at random, 
at any instant of time, to have c~ crosslinks. This in turn 
means that the distribution of segments on the time axis 
should be binomial in the following sense: the probability 
for having ~ filled circles in any time interval of size 
follows the distribution (5), namely 

n~ 
"~ ~ i f f ' e x p [ - ~ ' ( n -  P(ct,z) a ! (n-  . et)] (0t ~< n) 

P(a,z) = 0 (~ > n) 
(7) 

where we have used the fact that g is usually a very small 
number. For long chains, well inside the semidilute 
regime, n is usually very large; if we look at the probability 
P(~,z) for a << n, we can write 

1 
P(~,z) - ~--(.~ nff) 'exp( - n f f )  

1 
- 0~!(~)~e-~__ (~ << n) 

(8) 

But ~ = pz, where p is the average density of segments on 
the time axis. Hence 

P(ct,z) = ~(.v pz) 'e- P' (~ << n) (9) 

which means that the probability for having ~ filled circles 
in any arbitrary time interval of size At is 

P(a,At)= la~T. pAt)% -pA* (ct << n) (10) 

This Poisson distribution, without any restriction in a, is 
the probability that one would have for a random 
distribution of points on a one-dimensional axis, when the 
average density of these points is p. This means in our case 
that the distribution of filled circles on the one- 
dimensional time axis is, approximately, a random 
distribution. 

Next, we consider the one-dimensional, continuum 
percolation problem ~° that results when we look at the 
segments as percolating units. We say that two segments 
belong to the same cluster if they are connected through 
overlapped segments. The connectedness 'length' Ct, 
which is the size of an average cluster (cf. Figure 1), has 
been calculated, in the case of random distribution of 
percolating units, as 10 

¢2 _ eP'[ 2ezp' - (2 + 4pz)e p~ + 2pz + (pz) 2] 
pZ(e°~- 1) (11) 

Let us call t o the average time interval for which the 
chain is free, with no crosslinks. The fraction of time spent 
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free by the chain is 

t o 

to+~t 

This last expression is equal to the probability for any 
point, picked at random on the one-dimensional time 
axis, not to be covered by a percolating segment. 
According to equations (7), this is precisely* P(0,z): 

to =P(O,z) ,~_exp(-n~)=e -p~ (12a) 
/o+¢, 

Hence 

P(O,z) 
t° = 1 ~ z ) ¢ '  (12b) 

As we can see, we have now three quantities P(0,T), ~t 
and t o as functions of the average number ofcrosslinks per 
chain n ~ =  pz. Let us now look at some limiting cases: 

(i) At high temperatures, when the average number of 
crosslinks per chain is almost zero, 

P(0 ,z )  ~ 1 

to --~ cz) 

(13) 

(ii) At low temperatures, when there are on average 
several crosslinks per chain, 

P(O,z) ~- exp( - m.~) 

~, ~- 2 u2 reXPn(~'~) 

2U2z 

t °~  n g  

(14) 

As mentioned in the introduction, we are interested in 
the reptation time Trep, which essentially measures the 
time that it takes for a chain to renew completely the tube 
it is trapped in. For a non-ionic polymer solution, this 
time has been calculated as 8 

Trrep ~-- 271 N3 (15) 

where 1~ 1 is some microscopic time and N is the 
polymerization index of the chains. 

It has also been noted that the reptation time for a 
branched chain becomes exponentially long with the 
degree of polymerization s, and thus all reptation 
processes are almost quenched for crosslinked polymers. 
We will assume, for simplicity, that a chain only diffuses 
(reptates) if it is completely free of crosslinks. In this way, 
the effective time T~ taken by a chain to diffuse its own 
length is T~ep divided by the fraction of time that the chain 
spends free, with no crosslinks. According to equation 
(12a), this is precisely P(O,z). Hence 

T~ = T~¢p/P(0,z) - exp(n ff'~) T~p (16) 

* It should be noted that equation (12a) is equivalent to the ergodic 
assumption that the fraction of time that a chain spends free is equal to 
the fraction of chains, in the sample, carrying no crosslinks. 
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This last formula may not be valid well inside the gel 
phase, when each chain carries on average many 
crosslinks. In this case t o << ~t (cf. equation (14)), and the 
chains may move further away during the long times that 
they spend crosslinked than during the very short times 
that they spend free. 

THE ELASTIC MODULUS 

The elastic plateau modulus E of a polymer solution 
relates the strain induced during short times to an applied 
small perturbative stress. The elastic properties of a 
polymer solution originate from the usual elasticity of 
single chains between entanglements. During the short 
times over which we measure the strain, the chains cannot 
disentangle and the modulus remains essentially constant. 
In this sense, the entanglements act as links of a rubbery 
network and the plateau modulus should be proportional 
to the density of the entanglements 8. The width of the 
plateau measures the time taken for the chains to 
disentangle. 

For long chains, well inside the semidilute solution, 
there are many entanglement points per chain. In 
equation (4) we gave an expression for the number of 
contacts per chain; however, not every contact is an 
entanglement, as Figure 2 shows. The addition of 
crosslinks to contact points, which are already 
entanglements, does not alter the high-frequency modulus 
at all; however, if the crosslinks fall in contacts which are 
not entanglements, the plateau modulus will be altered. 
As we are interested in a regime not well inside the gel 
phase, when each chain carries a few crosslinks at most 
and such that equation (16) is still valid, the plateau 
modulus should not be greatly altered; notwithstanding 
this, the width of the plateau broadens due to the fact that 
it takes longer for crosslinked chains to disentangle 11 

We now regard the ionomer solution as a polymer 
solution for which the dynamics of each chain has been 
slowed down, according to equation (16). The viscosity of 
the ionomer solution can then be written as 

~/- ET~. = exp(n~)E T~p = exp(n.~)q o (17) 

where r/o is the viscosity of the non-sulphonated polymer 
solution, at the same concentration and same 
temperature. 

CO MP U TA TIO N  OF THE AVERAGE NUMBER 
OF CROSSLINKS 

We now attempt to give an expression for the probability 
g for a contact to be a physical link, for some particular 
cases. Each contact means a set of pairs of monomers, the 
two monomers of each pair belonging to different chains 
(or to different parts of the same chain). Let A be this 
number of pairs. The probability for the first monomer of 
each pair to be sulphonated is f. In a non-correlated case 
( T ~ ) ,  the probability for the second monomer to be 
sulphonated is a l so f  The probability for two sulphonated 
monomers, in the range of interaction of each other, to 
form a physical link has been calculated as 7 

1 r ( 3 - . / k T  
~'(T)- 1 +~./kT V(~ (18) 

where F(a,x) is the incomplete F-function and u is the 
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Figure 3 A plot of rt/rto as a funct ion of concentration for a high 
(constant) value of  the temperature, c I is the concentration for  

"•/..•J b 

Figure 2 (a) The addition of  a crosslink to a contact, which is 
already an entanglement, does not contr ibute to elasticity. (b) The 
addition of a crosslink to a contact, which is not an entanglement, 
contributes to elasticity 

(intrinsically negative) energy of the dipole-dipole 
interaction. The probability for a contact to be a physical 
link, in this non-correlated case, is then 

which the effects on the viscosity o f  the intramolecular and inter- 
molecular links just balance, and is of the order o f  c*  

n , ~ = N A ' f  ,,'(T) . (21) 

Thus, there should be a crossover from an f z  law to an f 
law, when we increase concentration at high temperature. 

As a final comment, we would like to point out that 
some enlightenment could be obtained for the correct 
expression of n ~ ,  for T different from infinity and c 
different from the melt concentration, by measuring the 
shape of the gelation curve. As explained in ref. 7, the 
gelation curve is given by the condition n~ , ,~ l .  
Experimentally, the gelation curve can be located by 
measuring the viscosity of the sulphonated polymer and 
checking that it coincides with e times the viscosity of the 
non-sulphonated one, for the same values of T and c, 
according to equation (17). 
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,~a= Af2,* ( T) (19) 

The average number of crosslinks per chain can then be 
written as ~ 

n ~ =  NcrAf  2/' (T) (20) 

where y is ¼ or 2 depending on whether we are in the 
excluded volume regime or in the theta regime. In Fioure 3 
we sketch the concentration dependence on the ratio q/r/o, 
for this high-temperature regime. 

In a melt, each monomer is in the range of interaction of 
r3/(½a)3 .., 8 0 - 8 0 0  o t h e r  monomers (cf. equation (2)), 
assuming a complete packing of the monomers. Under 
these conditions, each sulphonated monomer is very 
likely to find another sulphonated monomer within the 
range of interaction. The average number ofcrosslinks per 
chain should be written in this case as 
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